
Three New C₁₉-Diterpenoid Alkaloids from *Aconitum hemsleyanum* var. circinatum

by Feng Gao^a)^b), Xiao-Yu Liu^b), and Feng-Peng Wang*^b)

a) Agronomy College, Sichuan Agricultural University, No. 46 Xinkang Road, Yaan 625014, P. R. China
 b) Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China (phone/fax: +86-28-5501368; e-mail: wfp@scu.edu.cn)

Further phytochemical investigation of the roots of *Aconitum hemsleyanum* var. *circinatum* resulted in the isolation of three new aconitine-type C_{10} -diterpenoid alkaloids, hemsleyanines E-G (1-3, resp.). The structures of these new alkaloids were elucidated on the basis of spectral data including 2D-NMR.

Introduction. – There is a long and fascinating history of the utilization of the plants of *Aconitum* and *Delphinium* as a source of medicinal drugs by various civilizations. *Aconitum* preparations have been used as cardiotonics, febrifuges, sedatives, and anodynes, while *Delphinium* extracts have also been employed as sedatives and anthelmintics [1]. The diterpenoid alkaloids are considered to be the main bioactive components in these plants. In the course of our continuing investigation on the species of *Aconitum* and *Delphinium* [2–5], we studied the roots of *A. hemsleyanum* var. *circinatum* [6–8], which is endemic to the Emei Mountains of Sichuan Province in China and has been used as a folk remedy for the treatment of arthritic pain in Chinese traditional herbs [9]. Based on the isolation of $20 C_{19}$ -diterpenoid alkaloids from this plant [6–8], an additional phytochemical investigation was carried out, which led to the isolation of three new aconitine-type C_{19} -diterpenoid alkaloids, designated as hemsleyanines E-G (1–3, resp.). Herein, we report the isolation and structure elucidation of these new alkaloids.

Results and Discussion. – Hemsleyanine E (1) was isolated as an amorphous powder. The molecular formula $C_{30}H_{41}NO_9$ was deduced from the $[M+H]^+$ signal in

the HR-FAB-MS (m/z 560.2875; calc. 560.2860) and the ¹³C-NMR data (*Table*). The ¹H- and ¹³C-NMR spectra of **1** exhibited characteristic NMR features of an aconitinetype C_{19} -diterpenoid alkaloid [10], bearing three MeO groups ($\delta(H)$ 3.26, 3.32, 3.40 (3s); $\delta(C)$ 55.7, 58.1, 59.4 (3q)), and an anisoyl ester ($\delta(H)$ 6.90, 7.97 (2d, J = 8.4, each2 H), δ (H) 3.84 (s, 3 H); δ (C) see *Table*), but lacking the typical *N*-ethyl group. The doublet $(J = 8.4 \,\mathrm{Hz})$ at $\delta(\mathrm{H})$ 5.16 in the ¹H-NMR spectrum could be assigned to the H_{β} –C(14) based on the multiplicity and the coupling constant, resulting in the location of the anisoyl ester group at C(14) [10]. Three MeO groups could be located at C(1), C(16), and C(18), respectively, according to the HMBCs (Fig. 1) between 1-MeO $(\delta(H) 3.26)$ and C(1) $(\delta(C) 82.1)$, 16-MeO $(\delta(H) 3.40)$ and C(16) $(\delta(C) 83.0)$, as well as 18-MeO (δ (H) 3.32) and C(18) (δ (C) 78.0). Comparison of the NNR spectra of 1 with those of hemsleyadine (4) [6], whose structure was confirmed by single crystal Xray analysis, showed that the latter had an additional N-ethyl group. The ¹³C-NMR data of 1 and 4 are very similar except for C(7), C(17), and C(19) (Table), which could be contributed to the effect of N-deethylation. The structure of hemsleyanine E, therefore, was established as 1 by careful analysis of the ¹H-, ¹³C-NMR, and 2D-NMR (¹H, ¹H-COSY, HMQC, and HMBC) spectra. Hemsleyanine E (1) is a rare C₁₉-diterpenoid alkaloid containing a 5β -OH group, and without N-ethyl group.

Fig. 1. Selected ¹H, ¹H-COSY and HMBC correlations of hemsleyanine E (1)

Hemsleyanine F (2), a white amorphous compound, had a molecular formula of $C_{31}H_{41}NO_9$ (m/z 571.2662; calc. 571.2781) derived from the HR-EI-MS. The NMR spectra of **2** showed an *N*-ethyl group (δ (H) 1.09 (t, J = 7.2, 3 H), 2.40 – 2.44, 2.46 – 2.49 (2m, 1 H each); δ (C) 13.5 (q), 48.5 (t)), two MeO groups (δ (H) 3.34, 3.43 (2s, each 3 H); δ (C) 58.3, 59.5 (2q)), and an anisoyl ester (δ (H) 6.89, 7.92 (2d, J = 8.8, each 2 H), δ (H) 3.83 (s, 3 H); δ (C) see *Table*), which strongly suggested an aconitine-type C_{19} -diterpenoid alkaloid for **2** [10]. The anisoyl ester group could also be located at C(14) due to the one-H-atom *doublet* signal (J = 4.8 Hz) at δ (H) 5.19 in the ¹H-NMR spectrum. Comparison of the NMR data of **2** with those of the known hemsleyadine (**4**) revealed that the latter had an additional MeO group but the former had a quaternary C-atom at δ (C) 212.2, whose HMBCs (Fig. 2) between H–C(2) (δ (H) 2.40–2.44, 3.24–3.28) and H–C(3) (δ (H) 1.70–1.74, 2.43–2.47) indicated that the two compounds are very similar only except for the substituents at C(1): hemsleyanine F contains an oxo group at C(1) instead of MeO. Therefore, the structure of hemsleyanine F was assigned as **2**. This structure was also confirmed by extensive analysis of its 2D-

Table. ¹H- and ¹³C-NMR Data of $1-3^a$), and ¹³C-NMR Data of Compound 4. δ in ppm, J in Hz.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	δ(C) 82.1 (d) 25.0 (t)				
(1) $3.24 - 3.28 (m, H_g)$ $82.1 (d)$ $1.75 - 1.78 (m, H_g)$ $25.0 (t)$ $2.15 - 2.21 (m, H_g)$ $25.0 (t)$ $2.15 - 2.21 (m, H_g)$ $25.0 (t)$ $2.15 - 2.21 (m, H_g)$ $2.10 - 2.15 (m, H_g)$ $2.17 - 2.20 (m, H_g)$ $34.8 (t)$ $2.17 - 2.20 (m, H_g)$ $34.8 (t)$ $2.17 - 2.20 (m, H_g)$ $34.8 (t)$ $2.17 - 2.20 (m, H_g)$ $34.9 (t)$ $2.17 - 2.20 (m, H_g)$ $35.8 (d)$ $35.8 (d)$ $35.00 - 2.25 - 2.61 (m, H_g)$ $35.8 (d)$ $35.9 - 2.26 - 2.26 (m, H_g)$ $35.8 (d)$ $35.9 - 2.26 - 2.26 (m, H_g)$ $35.8 (d)$ $35.8 (d)$ $35.9 - 2.26 (m, H_g)$ $35.8 (d)$ $35.8 (d)$ $35.8 (d)$ $35.9 (d)$ $35.8 (d)$ $35.9 (d)$	82.1 (d) 25.0 (t)) δ(C)	$\delta(\mathrm{H})$	δ(C)	$\delta(C)$
3) $2.15 - 2.21 (m, H_g)$ $26.4 (t)$ $1.38 - 1.42 (m, H_g)$ $2.10 - 2.15 (m, H_g)$ $41.3 (s)$ $-2.10 - 2.15 (m, H_g)$ $-1.38 - 1.42 (m, H_g)$ $-1.38 - 1.42 (m, H_g)$ $-1.38 - 1.38 (t)$ $-1.78 - 1.82 (m, H_g)$ $-1.83 - 1.83 (m, H_g)$ $-1.13 (m, H_g)$ -1.13	(:)	$-2.44 (m, \underline{H}_a), $ 212.2 (s)	$3.22 - 3.26 \ (m, H_{\theta})$ $2.00 - 2.04 \ (m, H_{\alpha}),$	83.6 (d) 26.2 (t)	83.3 25.7
6) $\frac{2.10 - 2.13}{1.78 - 1.82} (m, H_g)$, $\frac{41.3}{9.28} (s)$ $\frac{2.17 - 2.20}{2.10 - 1.93} (m, H_g)$, $\frac{82.8}{34.8} (t)$ $\frac{1.78 - 1.82}{2.17 - 2.20} (m, H_g)$, $\frac{82.8}{74.2} (s)$ $\frac{2.17}{2.27 - 2.61} (m, H_g)$, $\frac{1.90 - 1.93}{74.2} (m, H_g)$, $\frac{1.90 - 1.93}{74.2} (m, H_g)$, $\frac{1.90 - 2.02}{2.57 - 2.61} (m, H_g)$, $\frac{1.90 - 2.02}{3.5.8} $, 26.4 (t)	$-3.28 \; (m, H_{\beta})$ $-1.74 \; (m, H_{\alpha}), \qquad 31.7 \; (t)$	$2.05-2.09 \ (m, H_{\beta})$ $1.35-1.38 \ (m, H_{\alpha})$,	28.4 (t)	27.9
6) $\frac{1.78 - 1.82}{1.78 - 1.82} (m, H_a),$ $\frac{62.5}{34.8} (r)$ $\frac{1.78 - 1.82}{2.17 - 2.20} (m, H_b),$ $\frac{62.5}{74.2} (s)$ $\frac{1.90 - 1.93}{1.90 - 1.93} (m, H_b),$ $\frac{64.7}{74.2} (s)$ $\frac{69}{2.77 - 2.61} (m, H_b),$ $\frac{65.7}{35.8} (d)$ $\frac{69}{2.77 - 2.61} (m, H_b),$ $\frac{69}{35.8} (d)$	41.3 (s)	41.2 ($1.70 - 1.74 (m, H_{\beta})$	41.1 (s)	40.8
(7) $\frac{2.17 - 2.20}{1.90 - 1.93} (m, H_B)$ $51.7 (d)$ $1.90 - 1.93 (m, H_B)$ $74.2 (s)$ $1.90 - 1.93 (m, H_B)$ $74.2 (s)$ $1.90 - 1.95 (dd, J = 9.6, 4.4, H_B)$ $35.8 (d)$ $35.8 (d)$ $35.9 - 2.05 (m, H_B)$, $35.8 (d)$ $35.9 - 2.05 (m, H_B)$, $34.9 (t)$ $3.00 - 2.02 - 2.03 (m, H_B)$ $34.9 (t)$ $3.00 - 2.02 - 2.03 (m, H_B)$ $34.9 (t)$ $3.00 - 2.02 - 2.03 (m, H_B)$ $3.00 - 2.03 - 2.03 (m, H_B)$ $3.00 - 2.03 - 2.03 (m, H_B)$ $3.00 - 2.00 (m, H_B)$, 34.8 (t)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1.85 - 1.89 \ (m, H_a), \\ 2.20 - 2.24 \ (m, H_a), \end{array}$	33.4 (t)	34.2
(9) $2.75 (dd, J = 9.6, 4.4, H_g)$ $47.7 (3)$ (10) $2.57 - 2.61 (m, H_g)$ $35.8 (d)$ 12) $1.99 - 2.02 (m, H_g)$, $34.9 (t)$ $2.08 - 2.12 (m, H_a)$, $76.1 (s)$ (14) $5.16 (d, J = 4.8, H_g)$ $79.8 (d)$ 15) or $2.77 - 2.31 (m, H_a)$, $41.8 (t)$ (15) $2.63 - 2.66 (m, H_g)$ $83.0 (d)$ (16) $3.32 - 3.36 (m, H_a)$ $83.0 (d)$ (17) $3.12 (\text{br. } s)$ $83.0 (d)$ (18) $2.98 (AB, J = 9.2)$, $78.0 (t)$ 19) $2.48 (A, J = 10.2)$, $78.0 (t)$ 20 $3.26 (s)$ $55.7 (q)$ eO $3.26 (s)$ $55.7 (q)$ eO $3.26 (s)$ $5.32 (s)$ $106.4 (s)$ =O $3.25 (s)$ $105.4 (s)$ $105.4 (s)$ (2.56) $7.97 (d, J = 8.4)$ $113.5 (d)$ (2.57) $7.97 (d, J = 8.4)$ $113.5 (d)$	51.7 (d)		$2.20 - 2.24 \ (m, H_{\beta})$ $2.50 - 2.54 \ (m, H_{\beta})$	41.2 (d)	45.4
(110) $\frac{2.7}{2.5} = 2.01 (m, H_g)$ $\frac{5.75 (m)}{34.9 (t)}$ $\frac{6.75 (m)}{34.9 (m)}$ $\frac{6.75 (m)}{34.9$	$^{(4, H_{\beta})}_{25}$ $^{(4, 2, 3)}_{25}$	45.9	$2.84 (dd, J=9.6, 4.8, H_{\beta})$	46.1 (d)	46.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$59.8 ag{0}$ $50.7 ag{s}$ $34.9 ag{t}$	63.5 39.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.7 (a) 50.5 (s) 41.0 (t)	50.2 35.7
(14) $5.16 (d, J = 4.8, H_g)$ $79.3 (3)$ (15) or $2.27 - 2.31 (m, H_a)$, $41.8 (t)$ (16) $3.32 - 3.66 (m, H_g)$ $83.0 (d)$ (17) $3.12 (\text{br. } s)$ $83.0 (d)$ (18) $2.98 (AB, J = 9.2)$, $78.0 (t)$ 19) $2.48 (A, J = 10.2)$, $78.0 (t)$ 20 $1.48 (A, J = 10.2)$,	76.1 (6)	75.0	$2.05-2.09 (m, H_a)$	(3) & 2.2	263
15) or $2.27 - 2.31 (m, H_a)$, $41.8 (t)$ ((15) $2.63 - 2.66 (m, H_a)$ $83.0 (d)$ $3.32 - 2.36 (m, H_a)$ $83.0 (d)$ $3.12 (br. s)$ $8.8.3 (d)$ $8.9.3 (d)$ $3.58 (AB, J = 9.2)$, $78.0 (t)$ $3.58 (AB, J = 9.2)$, $78.0 (t)$ $3.58 (AB, J = 9.2)$, $78.0 (t)$ $3.58 (AB, J = 10.2)$, $78.0 (t)$ $3.58 (AB, J = 10.2)$, $78.0 (t)$ $2.60 (\text{hidden})$ $ -$	79.8(d)			81.2 (d)	80.1
(16) $3.32 - 3.36 (m, H_q)$ $83.0 (d)$ $3.12 (br. s)$ $3.12 (br. s)$ $5.8.3 (d)$ $3.12 (br. s)$ $3.28 (AB, J = 9.2)$ $78.0 (t)$ $3.58 (AB, J = 9.2)$ $78.0 (t)$ $3.58 (AB, J = 9.2)$ $78.0 (t)$ $3.58 (AB, J = 9.2)$ $78.0 (t)$ $2.98 (AB, J = 9.2)$ $79.4 (t)$ $2.99 (AB, J = 10.2)$, $2.99 (AB, J = 10.2)$, $41.8(t)$	$-2.35 (m, H_a),$ 43.0 (t) -2 54 (m H _o)	5.56 (d, J = 9.6)	130.1 (d)	41.0
(17) 3.12 (br. s) 58.3 (d) 18) 2.98 (AB, $J = 9.2$), 78.0 (f) 2.98 (AB, $J = 9.2$) 78.0 (f) 2.98 (AB, $J = 9.2$) 50.4 (f) 2.48 (d, $J = 10.2$), 50.4 (f) 2.60 (hidden) – – – – – – – – – – – – – – – – – – –	83.0 (d)	83.2	5.90 (d, J = 9.6)	135.0(d)	83.5
19) $3.58 (AB, J = 9.2)$ 3.66 $19) 2.48 (d, J = 10.2), 50.4 (t) 2.18 (d, J = 10.2), 50.4 (t) 2.18 (d, J = 10.2), 50.4 (t) 2.18 (d, J = 10.2) 2.40 2.$	58.3 (d) 78.0 (t)	(br. s) $64.6 (d)$ $(AB. J = 9.6)$. $77.5 (t)$	3.01 (br. s) $2.98 (AB. J = 11.2)$.	63.5 (d) $79.1 (t)$	63.0 78.3
19) 2.48 (<i>d</i> , <i>J</i> = 10.2), 50.4 (<i>t</i>) 2.0 (hidden) 2.1	9.2)	AB, J = 9.6)	3.68 (AB, J = 11.2)		
21) $ -$.2), 50.4(t)	(hidden), 56.5 (t)	2.42 (hidden), 2.86 (hidden)	55.7 (t)	55.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	$2.40 - 2.44 \ (m)$, $48.5 \ (t)$	2.30 - 2.34 (m)	49.0 (t)	48.7
O 3.26 (s) 55.7 (q) 560 3.40 (s) 58.1 (q) 59.4		$2.40 - 2.49 \ (m)$ 1.09 $(t, J = 7.2)$ 13.5 (q)	$2.03 - 2.00 \ (m)$ $1.00 \ (t, J = 7.2)$	13.4 (q)	13.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 04	3.24 (s)	56.4 (q)	56.0
=0 - 166.4 (s) $=(2.6) 7.97 (d, J=8.4) 131.7 (d)$ $=(3.5) 6.90 (d, J=8.4) 113.5 (d)$ $= 163.2 (s)$		(s) 5.95 (d) 59.5 (d)	3.33 (s)	59.5 (q)	59.1
(2,6) 7.97 (d, J=8.4) 131.7 (d) $(3,5') 6.90 (d, J=8.4) 113.5 (d) $ $- 163.2 (s)$		166.2	ì	167.2 (s)	166.5
(3,5') 6.90 $(d, J=8.4)$ 113.5 (d)	122.4 (s) $131.7 (d)$	$(d \ I - 8.8)$ 131.8 (d)	$\frac{1}{7} 80 (d I = 8.8)$	121.8(s) $1317(d)$	122.3
- 163.2 (s)	113.5 (d)	113.6	6.90 (d, J = 8.8)	113.8 (d)	113.2
4'-MeO 3.84 (s) 55.2 (q) 3.83 (s)		(s) 163.4 (s) 55.3 (q)	3.84 (s)	163.8(s) 55.4 (q)	162.9 54.9
$^a)$ Recorded in CDCl3, $^1\text{H-NMR}$ at 400 MHz, and $^1^3\text{C-NMR}$ at 100 MHz.	MR at 400 MHz, and ¹³ C-NMR at 100	MHz.			

Fig. 2. Selected ¹H, ¹H-COSY and HMBC correlations of hemsleyanine F (2)

NMR (¹H,¹H-COSY, HMQC, and HMBC) spectra (*Table*). Hemsleyanine F (**2**) is an unusual natural C₁₉-diterpenoid alkaloid with an oxo group at C(1).

Hemsleyanine G (3), with a molecular formula of C₃₁H₄₁NO₈ (according to the HR-EI-MS), also exhibited characteristic NMR spectral features of a C₁₉-diterpenoid alkaloid containing an N-Et group (δ (H) 1.00 (t, J = 7.2, 3 H), 2.30 – 2.34, 2.63 – 2.68 $(2m, 1 \text{ H each}); \delta(C) 13.4 (q), 49.0 (t)), \text{ two MeO groups } (\delta(H) 3.24, 3.33 (2s, each))$ 3 H); δ (C) 56.4 (q), 59.5 (q)), an anisoyl ester group (δ (H) 6.90, 7.80 (2d, J = 8.8, each 2 H), $\delta(H)$ 3.84 (s, 3 H); $\delta(C)$ see Table), and a disubstituted (Z)-C=C bond ($\delta(H)$ 5.56, 5.90 (2d, J = 9.6, each 1 H); $\delta(C)$ 130.1, 135.0 (2d)). Two MeO groups could be located at C(1) and C(18) due to the correlations between 1-MeO (δ (H) 3.24) and C(1) $(\delta(C) 83.6)$ and between 18-MeO $(\delta(H) 3.33)$ and C(18) $(\delta(C) 79.1)$ in the HMBC experiment (Fig. 3). On the other hand, a doublet at $\delta(H)$ 5.24 (J = 4.8 Hz) could be attributed to H_{β} -C(14), implying the presence of the anisoyl group at C(14). The disubstituted C=C bond was located between C(15) and C(16) mainly based on the presence of critical HMBCs from H-C(15) (δ (H) 5.56 (d, J=9.6)) to C(7) (δ (C) 41.2), C(8) (δ (C) 74.3), C(9) (δ (C) 46.1), and C(13) (δ (C) 77.3), as well as H–C(16) $(\delta(H) 5.90 (d, J = 9.6))$ to C(8) $(\delta(C) 74.3)$, C(13) $(\delta(C) 77.3)$, and C(14) $(\delta(C) 81.2)$. Finally, unambiguous assignments of ¹H- and ¹³C-chemical shifts for hemsleyanine G (3) (Table) were accomplished using the 2D-NMR techniques (1H, 1H-COSY, HMQC, and HMBC). All available evidence suggested the structure of hemsleyanine G as 3.

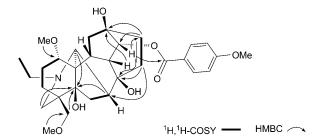


Fig. 3. Selected ¹H, ¹H-COSY and HMBC correlations of hemsleyanine G (3)

This research work was financially supported by the *National Natural Science Foundation of China* (Nos. 30672526 and 30873147).

Experimental Part

General. Silica gel GF_{254} and H (Qindao Sea Chemical Factory, P. R. China) were used for TLC and column chromatography (CC), resp.; spots on TLC were detected with modified Dragendorff's reagent. A polyvinyl sulfonic ion exchange resin (H-form, cross linking 1×1 , Chemical Factory of Nankai University, P. R. China) was used for the extraction of total alkaloids. M.p.: thermal values analysis with microscope; uncorrected. Optical rotations: Perkin-Elmer 341 polarimeter. IR Spectra: Nicolet FT-IR 200SXY spectrophotomer. 1 H- and 1 C-NMR spectra: Varian Unity INOVA 400/54 NMR spectrometer in CDCl₃ with TMS as the internal standard. ESI- and HR-MS: VG Auto spec 3000 or Finnigan MAT 90 instrument.

Plant Material. The sample of A. hemsleyanum var. circinatum W. T. WANG was collected in the Emei Mountains, Sichuan Province, China, and authenticated by Prof. W. T. Wang from the Institute of Botany, Chinese Academy of Sciences, where a voucher specimen has been deposited.

Extraction and Isolation. The powdered roots (4.0 kg) of A. hemsleyanum var. circinatum were percolated with 0.05M HCl (401). Wet resin (dry weight 40 kg) was added to the percolate, followed by repeated washing on a suction filter with deionized H₂O. The air-dried resin was then alkalized with 10% aq. NH₄OH (1.8 l) and continuously extracted with Et₂O (5.0 l), and evaporated to give the total crude alkaloids (68.0 g) as yellowish amorphous powder. The crude alkaloids (38.2 g) were chromatographed on a SiO₂ column eluting with CHCl₂/MeOH 200: $1 \rightarrow 7:1$ gradient system to give hemsleyadine (4: 2.6 g) and fractions A (3.2 g), B (10.8 g), C (9.6 g), and D (6.2 g). Fr. B (10.8 g) was chromatographed on a SiO₂ column eluting with CHCl₃/MeOH 97:3 to afford fractions B-1 (420 mg), B-2 (1.2 g), B-3 (4.2 g), and B-4 (3.8 g). Fr. B-2 was separated on a SiO₂ column eluting with petroleum ether (PE)/Me₂CO 3:1 to give three subfractions B-2-1 (120 mg), B-2-2 (400 mg), and B-2-3 (700 mg). Further SiO_2 chromatography of fraction B-2-1 eluting with cyclohexane/Me₂CO (3:1) produced hemsleyanine G (3, 82 mg). Fr. B-4 was chromatographed over a SiO₂ column with PE/Me₂CO 2:1 to give fractions B-4-1 (1.2 g) and B-4-2 (1.6 g). CC of Fr. B-4-2 with cyclohexane/Me₂CO/Et₂NH 80:20:1 as eluent gave fractions B-4-2-1 (76 mg), B-4-2-2 (180 mg), and B-4-2-3 (560 mg). In addition, Fr. B-4-2-3 was chromatographed on a SiO₂ column (PE/Me₂CO/Et₂NH 80:20:1) to provide hemsleyanine F (2; 77 mg). Further SiO₂ chromatography of Fr. D eluting with CHCl₃/MeOH 96:4 gave hemsleyanine E (1; 103 mg).

Hemsleyanine $E = (10,7\beta,14\alpha,16\beta)$ -5,8,13-Trihydroxy-1,16-dimethoxy-4-(methoxymethyl)aconitan-14-yl 4-Methoxybenzoate; 1). White amorphous powder. M.p. 81 – 82°. [α]₂₀²⁰ = +60.2 (c = 1.0, CHCl₃). IR (KBr): 3447, 2928, 1701, 1606, 1512, 1459, 1102. 1 H- (400 MHz, CDCl₃) and 13 C-NMR (100 MHz, CDCl₃): Table. ESI-MS: 560 (100, $[M+H]^{+}$). HR-FAB-MS: 560.2875 ($[M+H]^{+}$, C_{30} H₄₂NO $_{9}^{+}$; calc. 560.2860).

Hemsleyanine $F = (7\beta,14\alpha,16\beta)-20$ -Ethyl-5,8,13-trihydroxy-16-methoxy-4-(methoxymethyl)-1-oxo-aconitan-14-yl 4-Methoxybenzoate; **2**). White amorphous powder. M.p. 83 – 84°. $[\alpha]_{0}^{20} = -44.3$ (c = 1.0, CHCl₃). IR (KBr): 3443, 2938, 1699, 1615, 1503. 1 H- (400 MHz, CDCl₃) and 13 C-NMR (100 MHz, CDCl₃): Table. ESI-MS: 518 (100, $[M+H]^{+}$). HR-EI-MS: 571.2662 (M^{+} , $C_{31}H_{41}NO_{9}^{+}$; calc. 571.2781).

Hemsleyanine $G = (1\alpha,7\beta,14\alpha)-20$ -Ethyl-5,8,13-trihydroxy-1-methoxy-4-(methoxymethyl)aconit-15-en-14-yl 4-Methoxybenzoate; **3**). White amorphous powder. M.p. 87–88°. $[a]_D^{10} = +63.3$ (c = 1.0, CHCl₃). 1 H- (400 MHz, CDCl₃) and 13 C-NMR (100 MHz, CDCl₃): *Table*. ESI-MS: 556 (100, $[M+H]^+$). HR-EI-MS: 555.2695 (M^+ , $C_{31}H_{41}NO_8^+$; calc. 555.2832).

REFERENCES

- S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, in 'Alkaloids: Chemical and Perspectives', Ed. S. W. Pelletier, Wiley, New York, 1983, Vol. 1, p. 153.
- [2] P. Tang, Q.-H. Chen, F.-P. Wang, Tetrahedron Lett. 2009, 50, 460.
- [3] F.-Z. Chen, D.-L. Chen, Q.-H. Chen, F.-P. Wang, J. Nat. Prod. 2009, 72, 18.
- [4] H. Yan, D.-L. Chen, X.-X. Jian, F.-P. Wang, Helv. Chim. Acta 2007, 90, 1133.
- [5] X.-Y. Liu, Q.-H. Chen, F.-P. Wang, Helv. Chim. Acta 2009, 92, 745.
- [6] F. Gao, F.-P. Wang, Heterocycles 2005, 65, 365.
- [7] F. Gao, D.-L. Chen, F.-P. Wang, Chem. Pharm. Bull. 2006, 54, 117.
- [8] F. Gao, Q.-H. Chen, F.-P. Wang, J. Nat. Prod. 2007, 70, 876.

- [9] Institute of Botany, Chinese Academy of Sciences and Institute of Materia Medica, Chinese Academy of Medical Sciences, in 'Flora Republicae Popularis Sinicae', Science Press, Beijing, 1979, Vol. 27, p. 235.
- [10] S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, in 'Alkaloids: Chemical and Perspectives', Ed. S. W. Pelletier, Wiley, New York, 1984, Vol. 2, p. 205.

Received September 21, 2009